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ABSTRACT 

 

Solute transport through porous media is governed by various physical, chemical and biological 

process that takes place between solute and porous media. Advection, mechanical dispersion, 

molecular diffusion, decay processes, and solute exchange with the solid phase majorly govern the 

solute transport through porous media. All these processes play an important role in plume spreading 

and dilution, therefore quantification of impact of these processes on solute transport is essential to 

ensure the optimal cleaning operations. Most challenging task is to accurately predict the arrival 

time and spatial patterns of contaminant plume in the subsurface environment. The difficulty in 

prediction increases with the heterogeneity and chemical properties of solute and porous media. 

When solute transport parameters are different at different spatial and temporal scale, then 

predicting the behavior of solute in porous media become difficult. One of the most challenging 

aspect of studying solute transport through heterogeneous porous media is ever-growing effect of 

scale with space/ time on the estimation of dispersion. Influence of distance/ time-dependent 

dispersion on solute transport is observed at various scales. Therefore, present study focuses on the 

development of solute transport model which incorporate time-dependent dispersion with physical 

partitioning of heterogeneous porous media. In this study, numerical solution of Mobile-immobile 

model (MIM) with time-dependent dispersion is presented to simulate experimental data of 

conservative solute transport through a heterogeneous saturated soil column. Crank-Nicolson finite 

difference numerical technique is used to solve the coupled solute transport equations. Simulation 

capabilities of constant and time-dependent dispersion models are compared using time scale 

breakthrough curves for various down-gradient distances from input source. It is observed that the 

perturbation of solute concentration can be better simulated using MIM with time-dependent 

dispersion in comparison to constant dispersion model. Influence of time-dependent dispersion 

parameters on breakthrough curve is discussed. Numerical results depicted the early initial 

breakthrough point with decreasing time-dependent dispersion coefficient. It is concluded that time-

dependent dispersion function reduces the inherent uncertainty in estimation of coupling factor 

(mass transfer coefficient) in mobile-immobile model. 

 

KEYWORDS: Conservative solute transport, heterogeneous soil column, mobile-immobile model, 

time-dependent dispersion 
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INTRODUCTION 

         Contaminant transport through soil has been an important research problem in the geo-

environmental engineering for decades. Various mathematical models have been developed to 

understand the transport of chemicals through porous media while considering these processes. 

Classical advection dispersion equation (ADE) is the commonly used model for describing solute 

transport through porous media. But, when the system is heterogeneous, early arrival time and long 

late time tails have been observed from tracer test measurements which attributed to anomalous 

dispersion behavior (Levy and Berkowitz 2003; Cortis and Berkowitz 2004). It is evident that ADE 

is less adequate for simulating anomalous or non-equilibrium transport through heterogeneous soils 

(Levy and Berkowitz 2003; Gao et al. 2009). There are higher modelling approaches (mobile-

immobile model, multi-processes non equilibrium model, multi rate mass transfer mode) which 

consider physical and chemical non-equilibrium of the porous medium (van Genuchten and 

Wierenga 1976; Brusseau et al. 1989; Haggerty and Gorelick 1995). These models can predict the 

solute transport even for heterogeneous porous media viz. stratified porous media, fracture media 

(Kumar et al. 2006, 2008; Swami et al. 2013, 2016; Joshi et al. 2015; Singh et al. 2018; Zhou et al. 

2018; Xie et al. 2019). It is observed that the mobile-immobile model can better describe the solute 

transport in both the homogeneous and heterogeneous porous media as compared to advection 

dispersion model (Starr et al. 1985; Gao et al. 2009). 

         Several field and laboratory scale transport studies suggested that the dispersion is not a 

constant parameter but depends upon mean travel distance/distance along the movement of solute 

in porous media or temporal scale (Sauty 1980; Pickens and Grisak 1981; Gelhar et al. 1992; Logan 

1996). It is observed from stochastic analyses that the dispersion depends directly on travel time 

until it reaches to an asymptotic value (Dagan 1988; Gelhar et al. 1992). A constant dispersion is 

unable to capture the broad distribution of time scale breakthrough curves, which is represented by 

the recently developed time-dependent dispersion models in pre-asymptotic regime (Basha and EL-

Habel 1993; Kumar et al. 2006; Sharma and Srivastava 2012; Selim 2014; Yu et al. 2019). Barry 

and Sposito (1989) solved convection-dispersion equation with time dependent dispersion 

coefficient using Laplace transformation. Time-dependent dispersivity behavior of non-reactive 

solute in a system of parallel fractures has been studied by Kumar et al. (2006) using the method of 

spatial moments. It is observed that the distance-dependent dispersion coefficient resulted in a 

steeper concentration profile than the time-dependent dispersion coefficient (Zhou and Selim 2002, 

2003; Sharma and Srivastava 2012). Basha and El-Habel (1993) presented analytical solutions of 

the advection-dispersion equation (ADE) with time dependent dispersion coefficient. Analysis 

carried out by Basha and El-Habel (1993) is restricted to asymptotic dispersion coefficient. It is 

evident from the literature that the higher mathematical models with time-dependent dispersion 

functions have not been explored so far to simulate solute transport through heterogeneous media. 

So, it gives an idea to present numerical approach which can simulate non-Gaussian solute transport 

behavior. Therefore, in this study an attempt is made to test the applicability of MIM model with 

time-dependent dispersion coefficient in describing the non-reactive solute transport through 
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saturated porous medium. In this study, one dimensional MIM model governing transport equations 

with time-dependent dispersion coefficient are solved using finite difference method (FDM) using 

C++ programming language. 

 

Governing solute transport equations  

The mobile-immobile (MIM) model developed by (van Genuchten and Wierenga 

1976, 1977) on the basis of two-region or two-site model, which divides the heterogeneous 

porous media into mobile and immobile regions. Mobile region governs for flow transport 

processes, i.e. advection, dispersion process and stagnant or immobile region accounts for 

first-order lumped mass transfer between mobile and immobile regions. Both regions include 

the first order transformation reaction on specific sites in porous media. Considering linear 

sorption isotherm for the sake of simplicity, following governing equations can be written 

as: 

 

(𝜃𝑚 + 𝑓𝜌𝑏𝐾𝑑𝑚
)

𝜕𝐶𝑚

𝜕𝑡
= 𝜃𝑚𝐷(𝑡)

𝜕2𝐶𝑚

𝜕𝑥2 − 𝑣𝑚𝜃𝑚
𝜕𝐶𝑚

𝜕𝑥
− 𝜔(𝐶𝑚 − 𝐶𝑖𝑚) − (𝜃𝑚𝜇𝑙𝑚 + 𝑓𝜌𝑏𝐾𝑑𝑚

𝜇𝑠𝑚)𝐶𝑚           (1) 

 

(𝜃𝑖𝑚 + (1 − 𝑓)𝜌𝑏𝐾𝑑𝑖𝑚
)

𝜕𝐶𝑖𝑚

𝜕𝑡
= 𝜔(𝐶𝑚 − 𝐶𝑖𝑚) − (𝜃𝑖𝑚𝜇lim + (1 − 𝑓)𝜌𝑏𝐾𝑑𝑖𝑚

𝜇𝑠𝑖𝑚)𝐶𝑖𝑚           (2) 

 

         Where 𝐶𝑚 and 𝐶𝑖𝑚 are the solute concentrations in the mobile and immobile regions (M/L3) 

at any time 𝑡 respectively; 𝑥 = spatial coordinate (L) taken in the direction of the fluid flow; 

𝐷(𝑡)  represent time-dependent hydrodynamic dispersion coefficient along the flow velocity (L2/T); 

𝜃𝑚 and 𝜃𝑖𝑚 are volumetric water contents of the mobile and immobile regions respectively, and 𝜃 =

𝜃𝑚 + 𝜃𝑖𝑚; 𝜃 is the total volumetric water content of the porous media; 𝑣𝑚 = mobile pore water 

velocity (L/T); 𝑣𝑚𝜃𝑚 is equal to 𝑞 (flow rate (L/T)); 𝜔 is the first order mass transfer coefficient (T-

1); 𝑓 and (1 − 𝑓) represent the fractions of sorption sites that equilibrate instantly with the mobile 

and immobile regions, respectively; 𝜇𝑙𝑚 and 𝜇lim are the first-order decay coefficients for 

degradation of solutes in the mobile and immobile solution phases respectively; 𝜇𝑠𝑚 and 𝜇𝑠𝑖𝑚 are 

the first-order decay coefficients for degradation of solutes in the mobile and immobile region 

adsorbed solid phases respectively; 𝐾𝑑𝑚 = distribution coefficient of linear sorption process (L3/M) 

in the mobile region; 𝐾𝑑𝑖𝑚 = distribution coefficient of linear sorption process (L3/M) in the 

immobile region; 𝜌𝑏 = bulk density of the porous medium (M/L3). 
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         In this study, three cases of dispersion functions are considered to simulate experimental 

breakthrough curves (BTCs) of chloride transport through soil column. We define the following  

abbreviations to represent our results: MIMC is the mobile-immobile model with constant 

dispersion; MIML is the MIM with linear time-dependent dispersion; MIMA is the MIM with 

asymptotic time-dependent dispersion function.  

Constant dispersion function: 

𝐷(𝑡) = 𝐷0 + 𝐷𝑚               (3a)  

Linear time-dependent dispersion function: 

𝐷(𝑡) = 𝐷0
𝑡

𝐾𝐿
+ 𝐷𝑚               (3b) 

Asymptotic time-dependent dispersion function: 

𝐷(𝑡) = 𝐷0
𝑡

𝑡+𝐾𝐴
+ 𝐷𝑚                          (3c) 

         Where 𝐷0 = uniform hydrodynamic dispersion coefficient (L2/T); 𝐷𝑚= effective diffusion 

coefficient (L2/T); 𝐾𝐴 (T) is the asymptotic time-dependent dispersion coefficient which is 

equivalent to mean travel time; 𝐾𝐿 (T) is the linear time-dependent dispersion coefficient. 

 

Initial and Boundary Conditions 

The initial condition assumes that the porous medium is not contaminated and is given 

as follows: 

𝐶𝑚(𝑥, 0) = 𝐶𝑖𝑚(𝑥, 0) = 0                    (4) 

Following inlet and outlet boundary conditions have been used: 

Dirichlet type boundary condition at inlet – Continuous source concentration 

𝐶𝑚(0, 𝑡) = 𝐶0                         (5) 

Neumann type boundary condition at the outlet 

(
𝜕𝐶𝑚(𝑥,𝑡)

𝜕𝑥
)

(𝑥=𝐿,𝑡) 
= 0                  (6)  

Where 𝐶0 = injected concentration (M/L3) of solute source at the inlet of the porous medium. 

 

Numerical model and Validation 

 In the present model, solute transport through saturated porous media is described by coupled 

partial differential equation in 1-D domain. Crank-Nicolson finite-difference numerical technique 

has been used to obtain the solution of the mobile-immobile (MIM) transport equation with arbitrary 

time-dependent dispersion. First-order upwind scheme has been used to discretize advection term 

in the mobile transport equation because it avoids the artificial oscillations associated with the 

central weighting scheme (Zheng and Bennett 2002). Dispersive term in the mobile transport 

equation has been discretized using second-order central difference scheme. The temporal term of 

both the equations (1) and (2) have been discretized using a first order forward difference scheme. 

Discretized form of solute transport equations in the mobile-immobile domain is presented below: 
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𝑅𝑚 (
𝐶𝑚𝑖

𝑡+1−𝐶𝑚𝑖
𝑡

∆𝑡
) =

𝜃𝑚𝐷(𝑡+1)

2
(

𝐶𝑚𝑖+1
𝑡+1−2𝐶𝑚𝑖

𝑡+1+𝐶𝑚𝑖−1

𝑡+1

∆𝑥2 ) +
𝜃𝑚𝐷(𝑡)

2
(

𝐶𝑚𝑖+1
𝑡 −2𝐶𝑚𝑖

𝑡+𝐶𝑚𝑖−1

𝑡

∆𝑥2 ) −
𝜃𝑚𝑣𝑚

2
(

𝐶𝑚𝑖
𝑡+1−𝐶𝑚𝑖−1

𝑡+1

∆𝑥
) −

𝜃𝑚𝑣𝑚

2
(

𝐶𝑚𝑖
𝑡−𝐶𝑚𝑖−1

𝑡

∆𝑥
) −

𝜔

2
(𝐶𝑚𝑖

𝑡+1 − 𝐶𝑖𝑚𝑖
𝑡+1) −

𝜔

2
(𝐶𝑚𝑖

𝑡 − 𝐶𝑖𝑚𝑖
𝑡) −

𝐴1

2
𝐶𝑚𝑖

𝑡+1 −
𝐴1

2
𝐶𝑚𝑖

𝑡
                       (7) 

𝑅𝑖𝑚 (
𝐶𝑖𝑚𝑖

𝑡+1−𝐶𝑖𝑚𝑖
𝑡

∆𝑡
) =

𝜔

2
(𝐶𝑚𝑖

𝑡+1 − 𝐶𝑖𝑚𝑖
𝑡+1) +

𝜔

2
(𝐶𝑚𝑖

𝑡 − 𝐶𝑖𝑚𝑖
𝑡) −

𝐴2

2
𝐶𝑖𝑚𝑖

𝑡+1 −
𝐴2

2
𝐶𝑖𝑚𝑖

𝑡        (8) 

Where 

 𝑅𝑚 = (𝜃𝑚 + 𝑓𝜌𝑏𝐾𝑑𝑚)                           (9a) 

𝑅𝑖𝑚 = (𝜃𝑖𝑚 + (1 − 𝑓)𝜌𝑏𝐾𝑑𝑖𝑚)                                   (9b)  

𝐴1 = (𝜃𝑚𝜇𝑙𝑚 + 𝑓𝜌𝑏𝐾𝑑𝑚𝜇𝑠𝑚)               (9c) 

𝐴2 = (𝜃𝑖𝑚𝜇lim +(1−𝑓)𝜌𝑏𝐾𝑑𝑖𝑚𝜇𝑠𝑖𝑚
)                                              (9d) 

Where, ∆𝑡 = time step; ∆𝑥 = grid size; 𝑡 denotes the known time and (𝑡 + 1) 

denotes the unknown time level.            

𝐴7𝐶𝑚𝑖
𝑡+1 − (𝐴3𝐷(𝑡))𝐶𝑚𝑖+1

𝑡+1 − (𝐴3𝐷(𝑡) + 𝐴4)𝐶𝑚𝑖−1
𝑡+1 − 𝐴5𝐶𝑖𝑚𝑖

𝑡+1 = 𝐴10𝐶𝑚𝑖
𝑡 + (𝐴3𝐷(𝑡))𝐶𝑚𝑖+1

𝑡 +

(𝐴3𝐷(𝑡) + 𝐴4)𝐶𝑚𝑖−1
𝑡 + 𝐴5𝐶𝑖𝑚𝑖

𝑡               (10) 

𝐴8𝐶𝑖𝑚𝑖
𝑡+1 − 𝐴9𝐶𝑚𝑖

𝑡+1 = 𝐴11𝐶𝑖𝑚𝑖
𝑡 + 𝐴9𝐶𝑚𝑖

𝑡                    (11) 

Where coefficients are defined below: 

𝐴3 =
𝜃𝑚

∆𝑥2 (
∆𝑡

2𝑅𝑚
), 𝐴4 =

𝑣𝑚𝜃𝑚

∆𝑥
(

∆𝑡

2𝑅𝑚
)  

𝐴5 =
𝜔∆𝑡

2𝑅𝑚
, 𝐴6 =

𝐴1∆𝑡

2𝑅𝑚
 

𝐴7 = 1 + (2𝐴3𝐷(𝑡)) + 𝐴4 + 𝐴5 + 𝐴6 

𝐴8 = 1 + (
𝜔∆𝑡

2𝑅𝑖𝑚
) + (

𝐴2∆𝑡

2𝑅𝑖𝑚
) 𝐴9 = (

𝜔∆𝑡

2𝑅𝑖𝑚
),  

𝐴10 = 1 − (2𝐴3𝐷(𝑡)) − 𝐴4 − 𝐴5 − 𝐴6, 𝐴11 = 1 − (
𝜔∆𝑡

2𝑅𝑖𝑚
) − (

𝐴2∆𝑡

2𝑅𝑖𝑚
) 

        𝐷(𝑡) is the time-dependent dispersion coefficient which is updated after each time step in the 

numerical simulation. The discretized partial differential equations for solute transport through 

mobile-immobile domain have been solved using Tridiagonal Thomas algorithm. To get the 

accurate solution from Crank-Nicolson finite difference method, the values of grid Peclet number, 

𝑃𝑒 = (
𝑣∆𝑥

𝐷(𝑡)
) are kept between 1-2 and the Courant number, 𝐶𝑎𝑢 = (

𝑣∆𝑡

∆𝑥
) is kept less than 1. 

Presented numerical solution is validated with the solutions of Basha and El-Habel (1993) by scaling  
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down mobile-immobile model in to advection-dispersion equation. It is assumed that there is no 

solute concentration in the porous media initially and continuous solute source is present at the input 

end. For validation, input model parameters used are as follows: 𝐿 = 100 m, saturated porosity (𝜃) 

= 0.35, pore-water velocity (𝑣𝑚) = 0.25 m/day, total time = 200 days, retardation factor (𝑅) = 1, 

 Saturated porous media bulk density (𝜌𝑏) = 2.11 gm/cm3, maximum dispersion coefficient (𝐷0) of 

asymptotic time-dependent dispersion function = 1 m2/day, asymptotic time-dependent dispersion  

coefficient (𝐾𝐴) = 50, effective molecular diffusion coefficient (𝐷𝑚) = 0 m2/day, and first order 

decay constant = 0 day-1. 

 

Fig. 1. Concentration profile for non-reactive solute at time T = 200 for 𝐾𝐴 = 50 
 

 Figure 1 represents the variation of relative concentration for continuous injection at T = 200 

days. Relative concentration decreases gradually with distance which is due to the dispersion 

processes. The numerical model shows good agreement with results obtained by Basha and El-Habel 

(1993). Secondly, present numerical solution is validated with the analytical solutions of Barry and 

Sposito (1989) for advection-dispersion equation with constant dispersion function. It is assumed 

that continuous solute source is present at the input end. For validation, input model parameters used 

are as follows: 𝐿 = 5 cm, pore-water velocity (𝑣𝑚) = 1 cm/day, total time = 2.5 days, retardation 

factor (𝑅) = 1, dispersion coefficient (𝐷0) = 0.05 cm2/day, effective molecular diffusion coefficient 

(𝐷𝑚) = 0 m2/day, first order decay constant = 0 day-1. 
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Fig. 2. Spatial concentration profile for non-reactive solute at time T = 2.5 days 

         Figure 2 represents the spatial variation of relative concentration for continuous injection at 

time T = 2.5 days. The numerical model shows good agreement with the analytical solutions 

obtained by Barry and Sposito (1989).  

 

RESULTS AND DISCUSSIONS 

Concentration profiles with constant and time-dependent dispersion models 

         In this study, constant and time-dependent dispersion models are used to simulate observed 

experimental BTCs of non-reactive solute (chloride) transport for analyzing the simulation 

capabilities of different models. Observed experimental data of chloride transport through 

heterogeneous soil column is taken from Sharma and Abgaze, (2015). Description of horizontally  

placed 1500 cm long soil column is presented in the study by Sharma and Abgaze (2015). There are 

two parameters (𝜔, 𝐷0) in mobile-immobile model with constant dispersion (MIMC) and three 

parameters (𝜔, 𝐷0, 𝐾𝐴 𝑜𝑟 𝐾𝐿) of the linear time-dependent dispersion model (MIML) and 

asymptotic time-dependent dispersion model (MIMA) which need to be estimated at various down-

gradient distances. MIMC, MIML, and MIMA have similar mobile-water fraction and pore-water 

velocity in mobile region. Constant concentration type boundary condition is considered at inlet. 

Domain length = 1500 cm; total simulation time (𝑡) = 3000 minute, 𝑞 = 0.326 cm/min, 𝜃𝑚 = 0.34, 

𝜃𝑖𝑚= 0.04, 𝑣𝑚 = 0.9588 cm/min have been used for simulation. Firstly, the experimental data of 

chloride at 1500 cm down-gradient distance is fitted using MIMC model. Estimated values of 

parameters for MIMC are 𝜔 = 7.05E-05 min-1, 𝐷𝑚 = 0 cm2/min, and 𝐷0 = 67.98 cm2/min. Figure 3  
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shows the simulated BTC at 1500 cm down-gradient distance using MIMC model. It is observed  

that the BTC simulated using MIMC model over predicts observed data at large transport time. 

Now, observed breakthrough curve at 1500 cm down-gradient distance is simulated using MIML 

and MIMA models while keeping measured parameters (𝑞 = 0.326 cm/min, 𝜃𝑚= 0.34, 𝜃𝑖𝑚= 0.04, 

𝑣𝑚 = 0.9588 cm/min) fixed. Value of 𝐾𝐿 = 500,  𝜔 = 5.03E-05 min-1, and 𝐷0 = 40.67 cm2/min are 

obtained for MIML model while estimated values of 𝐾𝐴 = 180, 𝜔 = 5.03E-05 min-1, and 𝐷0 = 80.67 

cm2/min are obtained via best fit for MIMA model. Unknown transport parameters (𝜔, 𝐷0, 𝐾𝐿 𝑜𝑟 𝐾𝐴) 

are estimated using inverse optimization method in which Levenberg-Marquardt algorithm is 

coupled with solute transport model. Inverse optimization procedure is depicted in several studies 

(Cobb et al. 1982; Joshi et al. 2013; Kool et al. 1987; Ojha et al. 2011; Ratha et al. 2009). Similarly, 

BTCs at 1200 cm, 600 cm, and 300 cm down-gradient distances are simulated separately for all 

dispersion models to observe the influence of the travel distance on time-dependent dispersion 

parameters (𝐷0 and 𝐾𝐿 𝑜𝑟 𝐾𝐴). Estimated model parameters at all down-gradient distances for 

MIMC, MIML, and MIMA models are listed in Table 1. It is observed from figures 5 and 6 that the 

MIMC tends to overestimate the solute concentration at small transport times. Table 2 shows the 

goodness of fitting criterion values for all down-gradient distances. 

 

Table 1: Estimated values of Parameters at different down-gradient distances 

Distance (cm) 

MIMC MIML MIMA 

𝐷0 
(cm2/min) 

𝐷0 
(cm2/min) 

𝐾𝐿 
(min) 

𝐷0 
(cm2/min) 

𝐾𝐴 
(min) 

1500 67.98 40.67 500 80.67 180 

1200 58.81 38.67 510 70.67 200 

600 52.63 35.67 520 65.67 250 

300 45.78 32.67 550 63.67 255 
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Fig. 3: Simulation of observed data of chloride transport through soil column at 1500 cm down-gradient  

distance using constant and time-dependent dispersion models 

 

 

Fig. 4: Simulation of observed data of chloride transport through soil column at 1200 cm down-gradient  

distance using constant and time-dependent dispersion models 
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Fig. 5: Simulation of observed data of chloride transport through soil column at 600 cm down-gradient  

distance using constant and time-dependent dispersion models 

 

 

Fig. 6: Simulation of observed data of chloride transport through soil column at 300 cm down-gradient  

distance using constant and time-dependent dispersion models 
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Table 2: Goodness of fit obtained from simulation of chloride data 

Distance 

(cm) 

MIMC MIML MIMA 

r2 RMSE NSE r2 RMSE NSE r2 RMSE NSE 

1500 0.99 0.03 0.99 0.99 0.03 0.99 0.99 0.02 0.99 

1200 0.99 0.03 0.99 0.99 0.03 0.99 0.99 0.02 0.99 

600 0.97 0.08 0.95 0.98 0.06 0.97 0.98 0.05 0.98 

300 0.98 0.05 0.97 0.95 0.08 0.93 0.97 0.06 0.96 

 

         It is observed from Table 1 that the value of dispersion coefficient (𝐷0) increases with an 

increase in travel distance while value of 𝐾𝐿 𝑜𝑟 𝐾𝐴 decreases with travel distance. Estimated value 

of first order mass transfer coefficient (𝜔) for mobile-immobile model with constant dispersion 

(MIMC) is 7.05E-05 min-1 whereas mass transfer coefficient (𝜔) = 5.03E-05 min-1 is obtained for 

MIM with time-dependent dispersion model. It indicates that the time-dependent dispersion model 

tends to give smaller value of mass-transfer coefficient in comparison to MIM with constant 

dispersion model because of increase in the number of fitting parameters. It is seen that the values 

of r2, NSE are higher for MIMA in comparison to MIMC and MIML models as shown in Table 2. 

Simulated BTCs and fitting criterion values show that the asymptotic time-dependent dispersion 

model (MIMA) gives best fit of observed experimental data of chloride transport through 

heterogeneous long soil column in comparison to MIML and MIMC. It is suggested that the MIM 

model with time-dependent dispersion function should be used for simulating non-reactive solute 

transport through saturated porous media. 

 

Effect of time-dependent coefficient on breakthrough curves 

         The influence of linear (𝐾𝐿) and asymptotic time-dependent dispersion coefficient (𝐾𝐴) on 

BTC of conservative solute transport in heterogeneous soil column is shown in Figure 7 and 8 

respectively. In Figure 7, linear time-dependent dispersion function has been considered.  Pore-

water velocity, 𝑣𝑚 = 0.9588 cm/min, 𝜔 = 5.03e-05 min-1, and 𝐷0 = 40.67 cm2/min, total time= 

3000 min, and length = 1500 cm are considered to analyze the influence of 𝐾𝐿 on breakthrough 

curve. Effective dispersion coefficient is higher for KL=10 than KL =500, so earlier breakthrough  

achieved for KL =10 than KL =500. It has been observed that the breakthrough point delayed with an 

increase in KL value. 
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Fig. 7: Breakthrough curve predicted at 1500 cm down-gradient distance with different values of linear  

time-dependent dispersion coefficient (𝐾𝐿)  

 

Fig. 8: Breakthrough curve predicted at 1500 cm down-gradient distance with different values of  

asymptotic time-dependent dispersion coefficient (𝐾𝐴)  
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        Figure 8 shows the effect of asymptotic time-dependent dispersion coefficient (𝐾𝐴) on BTC. 

Pore-water velocity, 𝑣𝑚 = 0.9588 cm/min, 𝜔 = 5.03e-05 min-1, and 𝐷0 = 80.67 cm2/min, total 

pulse time = 3000 min, and length = 1500 cm are considered for sensitivity analysis. It is observed  

that the breakthrough point delayed with an increase in 𝐾𝐴 value. It is found that the change in the 

value of 𝐾𝐿 for linear time-dependent dispersion model (MIML) significantly affects the BTC in 

comparison to asymptotic dispersion model (MIMA). 

 

SUMMARY AND CONCLUSIONS 

In this study, MIM model with constant and time-dependent dispersion function have been used to 

simulate experimental BTC for constant concentration type boundary condition. It is observed that 

the time-dependent dispersion coefficient with mobile-immobile (MIM) model can simulate 

experimental BTCs of non-reactive solute through saturated heterogeneous soil column very well. 

MIMA gives the best fit breakthrough curves for conservative solute transport through 

heterogeneous long soil column in comparison to linear time-dependent and constant dispersion 

function. In addition, influence of time-dependent dispersion coefficient (𝐾𝐿 𝑜𝑟 𝐾𝐴) on breakthrough 

curve is studied. Large variation in BTC is observed for linear time-dependent dispersion model 

with 𝐾𝐿 value in comparison to asymptotic dispersion model. It is concluded that the MIM model 

with time-dependent dispersion coefficient should be used for simulating non-reactive solute 

transport through saturated porous media. In future, semi-analytical solution of the MIM model with 

time dependent dispersion can be developed, which will be helpful to compare numerical modelling 

results with analytical results. 
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